4-HYDROXY-2-QUINOLONES. 43.* THERMOLYSIS OF ETHYL ESTERS OF 1-R-2-OXO-4-HYDROXY-QUINOLINE-3-CARBOXYLIC ACIDS

I. V. Ukrainets', E. A. Taran², O. V. Shishkin¹, O. V. Gorokhova², S. G. Taran²,

N. A. Jaradat², and A. V. Turov¹

Ethyl esters of 1-R-2-oxo-4-hydroxyquinoline-3-carboxylic acids under thermolysis conditions are converted to 5,9-di-R-6,7,8-trioxodiquinolino[3,4-b;3',4'-e]-4H-pyrans. One of the synthesized compounds was studied by X-ray diffraction.

Keywords: 3-carbethoxy-4-hydroxy-2-quinolone, quinolinopyran, thermolysis, X-ray diffraction analysis.

We earlier noted the possibility of carrying out a Claisen condensation [2] and its intramolecular version, the Dieckmann reaction [3] under thermolysis conditions without using basic catalysts. Another interesting example of thermally activated ester condensation is thermolysis of ethyl esters of 1-R-2-oxo-4-hydroxyquinoline-3-carboxylic acids 1.

* For Communication 42, see [1].

¹ National Pharmaceutical Academy of Ukraine, Kharkov 310002; e-mail: igor@uiv.kharkov.ua.² Institute of Single Crystals, National Academy Sciences of Ukraine, Kharkov 310001. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 516-522, April, 2000. Original article submitted December 21, 1998.

Fig. 1. Structure of compound 2c.

As we found, when they are heated up to $230-250^{\circ}$ C, novel products can be obtained in high yields whose formation, according to mass spectrometry, involves at least two molecules of the starting ester; and judging from the ¹H NMR spectra, these compounds have a symmetric structure. X-ray diffraction on the N-ethyl derivative confirmed these data and furthermore allowed us to establish that the compounds under study are 5,9-di-R-6,7,8trioxodiquinolino[3,4-*b*;3',4'-*e*]-4H-pyrans **2**. Formation of such condensed systems obviously can be explained by the ability of 4-hydroxy-2-quinolones to exist in different tautomeric forms at elevated temperatures [4]. A significant contribution to the resonance hybrid from one of these (the 2,4-dioxo form **3**) is responsible for the possibility of intermolecular acylation, leading to carbonyldiquinoline **4**, after which the usual pyrolytic decomposition of the second ethoxycarbonyl group (probably as ethylene and CO₂ [5]) and subsequent irreversible closure of the pyran ring follow.

X-ray diffraction (Tables 1-3) established that in independent parts of the unit cell of the crystal of compound **2c**, there are two molecules (A and B) which differ in the structure of the pyran and pyridone moieties. The pyridone rings of molecule B are flat, while in molecule A they are found in a sofa conformation (the deviations of the C_{ctat} and C_{ctat} atoms from the mean-square planes of the rest of the atoms of the ring are 0.06 Å and -0.07 Å respectively). The pyran rings of both molecules are found in the boat conformation, but with different degrees of puckering. The deviations of the C_{ctat} and O_{ct} atoms from the mean-square planes of the rest of the rest of the rest of the rest of the atoms of the rest of the atoms of the ring are -0.09 Å (A), -0.17 Å (B) and -0.05 Å (A), -0.08 Å (B) respectively. The O_{c20} , O_{c40} , and O_{c30} atoms deviate in opposite directions relative to the mean plane of both molecules.

The ethyl groups are rotated relative to the $C_{(19)}-N_{(2)}$ and $C_{(13)}-N_{(1)}$ bonds (torsional angles $C_{(19)}-N_{(2)}-C_{(20)}-C_{(21)}$ 82.3(3)° (A), 90.2(2)° (B), $C_{(13)}-N_{(1)}-C_{(22)}-C_{(23)}$ -75.1(2)° (A), -80.8(3)° (B)).

Repulsion between alkyl substituents on the $N_{(1)}$, $N_{(2)}$ and $O_{(2)}$, $O_{(4)}$ atoms (shortened intramolecular contacts $H_{(22a)}...O_{(2)}$ 2.26 Å (A), 2.01 Å (B), $H_{(20b)}...O_{(4)}$ 2.30 Å (A), 2.31 Å (B), sum of the van der Waals radii 2.45 Å [6]) leads to lengthening of the bonds $N_{(1)}$ – $C_{(13)}$ 1.390(2) Å (A), 1.389(3) Å (B), $N_{(2)}$ – $C_{(13)}$ 1.393₍₄₎ Å (A), 1.388(3) Å (B) compared with the mean value 1.371 Å [7] and $N_{(1)}$ – $C_{(14)}$ 1.398(3) Å (A), 1.397(3) Å (B), $N_{(2)}$ – $C_{(18)}$ 1.397(3) Å (A), 1.400(3) Å (B) (mean value 1.355 Å). Similar effects have been observed in other N-alkyl derivatives of 2-quinoline [8].

EXPERIMENTAL

The 'H NMR spectra of the synthesized compounds were recorded on a Bruker WP-100 SY in DMSO- d_{e_0} , internal standard TMS. The mass spectra were recorded on a Finnigan MAT Incos 50 quadrupole spectrometer in full scanning mode in the range 33-700 *m/z*, ionization by electron impact at 70 eV, direct injection, heating rate ~5°C/sec. The ethyl esters of 1-R-2-oxo-4-hydroxyquinoline-3-carboxylic acids **1a-c** were obtained by the procedure in [9].

Atom	x	<u>y</u>	=	U _{cu}
N	8412(2)	11672(2)	4470(1)	40(1)
IN ₍₁₎	8413(2)	7774(2)	2006(1)	40(1)
N ₍₂₎	0791(1)	9406(1)	2006(1)	44(1)
O _{tto}	0/01(1)	12580(2)	2760(2)	42(1)
	9897(2)	12089(2)	3760(2)	03(1) 80(1)
O ₍₃₎	11784(2)	0542(2)	1499(2)	64(1)
0 ₀₀	10622(2)	9542(2) 5788(5)	1062(2)	04(1) 40(1)
C _m	10022(2)	3/00(2)	2239(2)	49(1) 55(1)
C ₍₂₎	9671(2)	5100(2)	202(2)	52(1) 54(1)
C C	0700(2)	6177(2)	3155(2)	40(1)
C ₍₄₎	0672(2)	7080(2)	3133(2)	49(1) 20(1)
C in	9053(2)	247(2)	2024(2)	39(1)
C (6)	9394(2)	0525(2)	2903(2)	30(1)
C _C	7001(2)	9525(2)	3632(2)	37(1)
	7901(2)	9399(2)	4403(2)	37(1)
C 191	(25/(2)	8720(2)	5367(2)	45(1)
C (10)	6200(2)	0817(2)	5507(2)	40(1)
C _{ini}	6290(2)	10707(2)	5301(2)	49(1)
C ₁₂₁	7740(2)	10797(2)	1770(2)	40(1) 28(1)
Cas	7749(2)	10703(2)	4779(2)	30(1)
Can	9204(2)	1036(2)	3919(2)	42(1)
City	10181(2)	10282(2)	3,942(2)	45(1)
CINI	10164(2)	0106(2)	2639(2)	30(1)
C _(P)	10290(2)	9100(2)	2050(2)	44(1)
C (M)	10512(2)	6023(2)	2007(2)	44(1)
C rim	10012(2)	7630(2)	1507(2)	57(1)
C (20)	12230(2)	6687(2)	114(2)	87(1)
Can	(1055(5)	127812)	414(-)	50(1)
C (22)	6000(2)	12/01(2)	3985(2)	63(1)
C (23) N	6305(2)	5358(2)	6986(1)	44(1)
N.	3210(2)	951(2)	0313(1)	43(1)
0	3850(1)	3983(1)	8525(1)	42(1)
	6714(2)	3629(2)	6586(2)	64(1)
0.25	5187(1)	1647(2)	7024(1)	51(1)
Q.r.	4583(2)	568(2)	8490(2)	69(1)
Can	1748(2)	1369(2)	10225(2)	51(1)
Can	1196(2)	2105(2)	10553(2)	58(1)
Can	1439(2)	3151(2)	10314(2)	55(1)
Can	2261(2)	3457(2)	9739(2)	46(1)
Cisi	2843(2)	2715(2)	9384(2)	37(1)
C ₁₀₁	3668(2)	2953(2)	8747(2)	36(1)
C(7)	4690(2)	4371(2)	7986(2)	37(1)
C _(S)	4901(2)	5548(2)	7930(2)	39(1)
$C_{i\sigma}$	4283(2)	6225(2)	8368(2)	46(1)
$C_{(107)}$	4534(2)	7357(2)	8299(2)	55(1)
$C_{(11)}$	5426(2)	7845(2)	7813(2)	55(1)
$C_{\alpha 2\beta}$	6049(2)	7211(2)	7391(2)	50(1)
C_{rtv_1}	5793(2)	6037(2)	7426(2)	42(1)
Cath	6160(2)	4179(2)	6998(2)	43(1)
C ₍₁₅₎	5247(2)	3679(2)	7540(2)	38(1)
C_{i16}	4926(2)	2436(2)	7587(2)	38(1)
$C_{(17)}$	4205(2)	2218(2)	8359(2)	38(1)
C (18)	4034(2)	1187(2)	8697(2)	45(1)
C (197)	2600(2)	1656(2)	9636(2)	40(1)
C ₍₂₀₎	3003(2)	-123(2)	9603(2)	52(1)
C _(21')	1978(3)	-1370(2)	8736(2)	73(1)
C (22')	7341(2)	5872(3)	6469(2)	60(1)
$C_{12}v_{2}$	6795(3)	5597(3)	5305(2)	72(1)

TABLE 1. Coordinates of Non-hydrogen Atoms (×10³) and Equivalent Isotropic Thermal Parameters (Å×10³) in the Pyran 2c Structure

Bond	<i>I</i> , Å	Bond	ι, λ
NunCu	1 39()(7)	Nu-Cu	1 308/3)
NucCa	1.475(3)	No.Cox	1 303(3)
National Cara	1 397(3)		1.373(3)
Out Cus	1360(2)	$O_{12} = C_{120}$	1 363(2)
0(1) C(1)	1.220(2)		1.303(2)
	1.220(2)	C. C.	1 374(3)
CareCan	1.401(3)		1 381(3)
	1 369(3)		1.402(3)
CranCan	1.403(3)		1.402(3)
C. C.	1 353(3)	$C_{15} = C_{16}$	1.367(3)
	1.355(3)		1.307(3)
$C_{(7)} C_{(8)}$	1.420(3)	$C_{(8)}$ $C_{(3)}$	1.410(2)
$C_{(8)}$, $C_{(9)}$	1.411(3)	$C_{(9)} C_{(10)}$	1.303(3)
	1.200(3)	CanCan	1.374(3)
Cris Cris	1.400(.5)		1.473(3)
	1.477(3)	$C_{(16)}$ $C_{(17)}$	1.477(3)
$C_{(1)} = C_{(18)}$	1.4/2(3)	C(20) C(21)	1.304(4)
C ₁₂₂₁ C ₁₂₃₁	1.512(3)	$N_{(P)} \in C_{(P)}$	1.389(3)
$\mathbf{N}_{(1)} = \mathbf{C}_{(14)}$	1.397(3)	N ₍₁₎ C ₍₂₁₎	1.478(3)
N _{C1} C _{O2}	1.388(3)	$N_{(2)}$ $C_{(18)}$	1.400(3)
N(2)-C(20)	1.4/3(3)	$O_{(1)} \circ C_{(7)}$	1.369(2)
O ₍₁₃ -C ₁₆₃	1.370(2)	$O_{(2')} - C_{(1')}$	1.219(3)
$O_{(3)}$ $C_{(18)}$	1.213(2)	$O_{(4')} = C_{(18')}$	1.222(3)
$C_{(2)}$ $C_{(2)}$	1.359(3)	C(1)-C(14)	1.407(3)
$C_{(2')} = C_{(3')}$	1.389(3)	$C_{(3)}$, $C_{(4')}$	1.369(3)
$C_{(41)} C_{(51)}$	1.401(3)	$C_{(5)}$, $C_{(19)}$	1.415(3)
$C_{(\alpha)}$ $C_{(\alpha)}$	1.423(3)	$C_{16'1'} - C_{(1'')}$	1.356(3)
$C_{i^{m_1}} C_{i1^{m_1}}$	1.357(3)	$C_{(T)} \cdot C_{(S)}$	1.428(3)
$C_{18'}$, $C_{19'}$	1.404(3)	$C_{(8^{\circ})} = C_{(1^{3^{\circ}})}$	1.412(3)
$C_{(\alpha)}$ $C_{(10')}$	1.369(3)	$C_{(107)}$ - $C_{(117)}$	1.393(3)
$C_{(11)}$ $C_{(12)}$	1.367(3)	C(12)=C(13)	1.400(3)
$C_{(12)} \cdot C_{(12)}$	1.470(3)	$C_{(15)} = C_{(16)}$	1.477(3)
C ₍₁₆₎ -C ₍₁₇₎	1.480(3)	$C_{(17)} - C_{(18)}$	1.470(3)
$C_{(20)} = C_{(21)}$	1.501(3)	$C_{(22)} - C_{(23)}$	1.518(4)

TABLE 2. Bond Lengths (1) in the Pyran 2c Structure

6,7,8-Trioxodiquinolino[3,4-*b***; 3',4'-***e***]-4H-pyran (2a). Ethyl ester of 1H-2-oxo-4-hydroxyquinoline-3carboxylic acid (1a) (2.33 g, 0.01 mol) was maintained on a metal bath at 250°C for 15 min, then cooled, washed with alcohol, and dried. Yield 1.62 g (98%); mp > 360°C (DMF). ¹H NMR spectrum: 11.54 (2H, s, NH); 8.46 (2H, d, 1.13-H); 7.83 (2H, t, 3, 11-H); 7.63 (2H, d, 4, 10-H); 7.37 ppm (2H, t, 2,12-H). Mass spectrum, m/z (I_{ret}, %): 330 (32) [M]^{*}, 302 (44), 274 (10), 44 (56), 39 (100). Found, %: C 69.21; H 3.10; N 8.34. C_{19}H_{10}N_2O_4. Calculated, %: C 69.09; H 3.05; N 8.48.**

5,9-Dimethyl-6,7,8-trioxodiquinolino[3,4-b; 3',4'-e]-4H-pyran (2b) was obtained similarly. Yield 96%; mp > 360°C (DMF). 'H NMR spectrum: 8.48 (2H, d, 1,13-H); 7.84 (2H, t, 3,11-H); 7.66 (2H, d, 4,10-H); 7.41 (2H, t, 2,12-H); 3.58 ppm (6H, s, Me). Mass spectrum: 358 (36) [M]', 329 (100). Found, %: C 70.28; H 3.99; N 7.84. $C_{21}H_{14}N_{3}O_{4}$. Calculated, %: C 70.39; H 3.94; N 7.82.

5,9-Diethyl-6,7,8-trioxodiquinolino[3,4-*b***;3',4'-***e***]-4H-pyran (2c)** was obtained similarly. Yield 94%; mp > 360°C (DMF). ¹H NMR spectrum: 8.48 (2H, d, 1,13-H); 7.86 (2H, t, 3,11-H); 7.65 (2H, d, 4,10-H); 7.44 (2H, t, 2,12-H); 4.29 (4H, q, NCH₂); 1.29 ppm (6H, t, Me). Mass spectrum: 386 (100) [M]^{*}, 357 (61), 343 (12), 315 (33). Found, %: C 71.43; H 4.67; N 7.29. $C_{24}H_{18}N_{2}O_{4}$. Calculated, %: C 71.49; H 4.70; N 7.25.

X-ray Diffraction Study. The crystal system of pyran **2c** is triclinic; at 20°C, a = 12.555(3), b = 12.617(3), c = 13.630(3) Å; $\alpha = 110.43(2)^\circ$, $\beta = 95.82(2)^\circ$, $\gamma = 114.32(2)^\circ$; V = 1766.1(7) Å'; $d_{calc} = 1.453$ g/cm'; space group P_1 ; Z = 4.

Angle	o, deg.	Angle	o, deg.
C_{ct31} N_{ct1} C_{ct31}	124.1(2)	C(13) N(1) C(22)	118.9(2)
C ₍₁₄₎ N ₍₁₎ -C ₍₂₂₎	117.0(2)	$C_{(19)} N_{(2)} - C_{(18)}$	123.8(2)
$C_{(19)} = N_{(2)} + C_{(20)}$	119.7(2)	C ₍₁₈₎ N ₍₂₎ C ₍₂₀₎	116.5(2)
$C_{(b)} O_{(1)} C_{(2)}$	119.7(2)	$C_{(2)} = C_{(1)} = C_{(19)}$	120.5(2)
$C_{(1)}$ - $C_{(2)}$ $C_{(3)}$	121.2(2)	$\mathbf{C}_{(1)}$ $\mathbf{C}_{(1)}$ $\mathbf{C}_{(2)}$	119.4(2)
$C_{(3)}$ $C_{(4)}$ $C_{(5)}$	120.7(2)	$C_{(4)} - C_{(5)} - C_{(19)}$	119.9(2)
$C_{(4)} = C_{(5)} = C_{(6)}$	122.9(2)	$C_{(19)} = C_{(5)} C_{(6)}$	117.1(2)
$C_{(17)} - C_{(b)} O_{(1)}$	123.2(2)	$C_{(17)} - C_{(6)} - C_{(5)}$	123.8(2)
$O_{(1)} C_{(6)} C_{(5)}$	113.0(2)	$O_{(1)} - C_{(7)} - C_{(15)}$	122.2(2)
$O_{(1)} = C_{(2)} C_{(3)}$	113.7(2)	$C_{(15)} \cdot C_{(7)} \cdot C_{(8)}$	124.2(2)
$C_{(13)}$, $C_{(3)}$ - $C_{(9)}$	119.6(2)	$C_{(13)} - C_{(8)} - C_{(7)}$	117.4(2)
$C_{(9)} = C_{(8)} \cdot C_{(7)}$	123.0(2)	$C_{(10)} - C_{(9)} - C_{(8)}$	120.5(2)
Con-Crim Crith	119.9(2)	$C_{(12)} C_{(11)} C_{(10)}$	121.3(2)
Can Can Can	120.0(2)	$N_{(1)}$ $C_{(13)}$ $C_{(12)}$	122.0(2)
$N_{(1)} C_{(1)} C_{(3)}$	119.3(2)	$C_{(12)} - C_{(13)} - C_{(8)}$	118.7(2)
Oct-Cout-Not	120.1(2)	Oca-Cata-Casa	123.4(2)
No -Con-Cos	116.4(2)	$C_{12} - C_{113} - C_{114}$	118.3(2)
C_{177} C_{1151} C_{1151}	120.2(2)	CITA-CITA-CITA	121.5(2)
$O_{(3)}$, $C_{(15)}$, $C_{(15)}$	123.2(2)	O ₍₁₎ -C ₍₁₀₎ C ₍₁₇₎	122.7(2)
C1151-C1161-C1171	114,1(2)	City City City	119.0(2)
$C_{(b)}$ $C_{(17)}$ $C_{(16)}$	120,0(2)	Cits)-Citz, Cits	121.1(2)
O_{CIN} C_{CIN} N_{C1}	120,0(2)	Oth Cash-Cath	123.7(2)
Nex-Case Car	116.3(2)	Nex-Com Con	122.1(2)
Nex-Case Case	119.7(2)	Crip Crip Cris	118,2(2)
Net Con-Cett	112,8(2)	Nor Con Con	111.9(2)
Carn Nan Carn	123,6(2)	Cam-Nan-Cam	120.2(2)
Car Nan-Cam	116,2(2)	Cash Nen Cush	123.8(2)
Cum Net Cian	120,4(2)	$C_{(15)} = N_{(2)} + C_{(20)}$	115.8(2)
$\mathbf{C}_{(T)} = \mathbf{O}_{(T)} = \mathbf{C}_{(0)}$	119.5(2)	Cen Cun Cum	120.5(2)
$C_{(1)} = C_{(2)} = C_{(2)}$	121.7(2)	$\mathbf{C}_{(1)} = \mathbf{C}_{(1)} + \mathbf{C}_{(2)}$	119.5(2)
$\mathbf{C}_{(1)} = \mathbf{C}_{(1)} \mathbf{C}_{(2)}$	120.4(2)	$\mathbf{C}_{(1)}$ $\mathbf{C}_{(2)}$ $\mathbf{C}_{(12)}$	120.1(2)
$C_{(4)} = C_{(6)} = C_{(6)}$	123.0(2)	$C_{(197)} = C_{(197)} = C_{(197)}$	116.9(2)
$C_{(17)}$ $C_{(N)}$ $O_{(12)}$	122.2(2)	$C_{(12)} = C_{(6)} = C_{(8)}$	124.0(2)
$O_{(1)}$ $C_{(6)}$ $C_{(5)}$	113,8(2)	$C_{(1^{(k)})} \cdot C_{(7^{(k)})} \cdot O_{(k)}$	122.3(2)
$C_{(15)} = C_{(2)} C_{(5)}$	124.1(2)	$O_{(1)}$ $C_{(2)}$ $C_{(3)}$	113.7(2)
$C_{(3)} \cdot C_{(3)} \cdot C_{(13)}$	120.2(2)	$C_{191} - C_{191} - C_{171}$	123.0(2)
$C_{(13)} = C_{(3)} - C_{(7)}$	116.9(2)	$C_{(10)} = C_{(9)} = C_{(8)}$	120.3(2)
$C_{(9)} - C_{(10)} - C_{(12)}$	119.5(2)	$C_{(12)} - C_{(11)} - C_{(10)}$	121.4(2)
$C_{(11)} = C_{(12)} = C_{(13)}$	120.5(2)	Non Cam Cam	121.9(2)
$N_{(1)} = C_{(13)} \cdot C_{(3)}$	119,9(2)	$C_{(12)} - C_{(13)} - C_{(3)}$	118.2(2)
$O_{(2)} = C_{(1,1)} = N_{(1)}$	120,1(2)	$O_{(2')} = C_{(14')} = C_{(15')}$	123.3(2)
$N_{(1)} - C_{(14)} - C_{(15)}$	116.7(2)	$C_{(T)} = C_{(1S)} = C_{(1S)}$	118.8(2)
$C_{(2)}$ $C_{(18)}$ $C_{(18)}$	120.3(2)	$C_{(14)} = C_{(15)} \cdot C_{(16)}$	120.8(2)
$O_{(3')} C_{(16')} - C_{(15')}$	123.7(2)	$O_{(3')} = C_{(16')} C_{(17')}$	123.0(2)
$C_{(18)} - C_{(16)} - C_{(17)}$	113.3(2)	$C_{(K)} = C_{(17)} = C_{(18)}$	118.9(2)
$C_{(\kappa)} = C_{(1, \tau)} = C_{(1, \kappa)}$	120.3(2)	$C_{(183)} = C_{(173)} = C_{(163)}$	120.8(2)
$O_{(4^{\circ})} \cdot C_{(18^{\circ})} \cdot N_{(2^{\circ})}$	119.9(2)	$O_{(4')} C_{(18)} = C_{(17)}$	123.8(2)
$N_{(2)} = C_{(18)} + C_{(17)}$	116.2(2)	$N_{(2)} = C_{(12)} + C_{(11)}$	122.4(2)
$N_{(2')} = C_{(1'')} = C_{(3'')}$	119.7(2)	$\mathbf{C}_{(1')} = \mathbf{C}_{(1'')} = \mathbf{C}_{(2')}$	117.9(2)
$N_{(2)} - C_{(20)} - C_{(21)}$	110.9(2)	N(1)7 C(22)7 C(23)	112.2(2)

TABLE 3. Bond Angles (ω) in the Pyran 2c Structure

The unit cell parameters and the intensities of 5960 independent reflections ($R_{imi} = 0.03$) were measured on a Siemens P3/PC automatic diffractometer (λ MoK α , graphite monochromator, $\theta/2\theta$ -scanning, $2\theta_{max} = 50^{\circ}$). The structure was deciphered by the direct method using the SHELXTL PLUS program package [10]. The positions of the hydrogen atoms were calculated geometrically and refined using the "rider" model with fixed $U_{iso} = nU_{eq}$ for the nonhydrogen atom bonded to the given hydrogen atom (n = 1.5 for methyl groups and 1.2 for the remaining hydrogen atoms). F^2 full-matrix least-squares refinement in the anisotropic approximation for the non-hydrogen atoms was done down to $wR_s = 0.128$ ($R_1 = 0.051$ using 4198 reflections with $F > 4\sigma(F)$, S = 1.07).

REFERENCES

- 1. I. V. Ukrainets, E. A. Taran, O. V. Gorokhova, Jaradat Nidal Amin, L. N. Voronina, and I. V. Porokhnyak, *Khim. Geterotsikl. Soedin.*, No. 3, 409 (2000).
- 2. V. Ukrainets, P. A. Bezugly, V. I. Treskach, S. G. Taran, and O. V. Gorokhova, *Tetrahedron*, **50**, 10331 (1994).
- 3. I. V. Ukrainets, S. G. Taran, P. A. Bezuglyi, and O. A. Evtifeeva, *Khim. Geterotsikl. Soedin.*, No. 9, 1219 (1993).
- 4. I. V. Ukrainets, S. G. Taran, O. V. Gorokhova, I. V. Gorlacheva, P. A. Bezuglyi, and A. V. Turov, *Khim. Geterotsikl. Soedin.*, No. 8, 1104 (1996).
- 5. P. Sykes, A Guidebook to Mechanism in Organic Chemistry [Russian translation], Khimiya, Moscow (1991).
- 6. Yu. V. Zefirov and P. M. Zorkii, Usp. Khim., 64. No. 5, 446 (1995).
- 7. H.-B. Bürgi and J. D. Dunitz, *Structure Correlation*, VCH, Weinheim (1994), Vol. 2, 926.
- 8. Ru-Ji Wang, Hong-Gen Wang, and T. Matsuura, J. Heterocycl. Chem., 28, 1481 (1991).
- 9. I. V. Ukrainets, O. V. Gorokhova, S. G. Taran, P. A. Bezuglyi, A. V. Turov, N. A. Marusenko, and O. A. Evtifeeva, *Khim. Geterotsikl. Soedin.*, No. 7, 958 (1994).
- 10. G. M. Sheldrick, SHELXTL PLUS. PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data (1994), Rev. 5.02.